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A method is described for the solution of transient, incompressible viscous flow in 
two dimensions. The dependent variables, stream function and vorticity, were ap- 
proximated over each triangular element using linear interpolation functions. This 
approximation reduces the problem to a set of matrix equations whose term involving 
derivatives of time is the mass matrix. The lumping of this matrix together with the 
application of Euler integration scheme produces an efficient method of solution. Once 
the nodal values of the stream function are known the velocities and pressure can be 
computed. 

As an application a study of the vortex street development behind a rectangular 
obstruction is described. The flow has been impulsively accelerated to a constant speed 
in a channel of finite width. The Reynolds number range investigated is between 20 
and 100. 

INTRODUCTION 

.Many efforts have been made to integrate the nonlinear partial differential 
equations known as the Navier-Stokes equations. In the las 10 years, however, 
applications of finite-difference and finite-element approximations, together with 
high-speed digital computers have proved successful in solving these equations for 
special cases of geometry and flow. 

A finite-difference scheme presented by Fromm and Harlow in [l] has had 
considerable success in solving problems for which flow is unstable, but in addition 
to having a regular mesh it seems to require large amounts of computer time. The 
need for a more versatile method has led several investigators to the application 
of the finite-element method to Navier-Stokes equations. 

Tong [2] in 1971 presented results for steady flow using finite elements with 
pressure and velocities as dependent variables. Steady flow problems were also 
solved by Olson [3] who used stream function as the unknown, and high order 
elements. 

Lieber et al. [4] have more recently presented results for steady flow using an 
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efficient stream function only with a finite-element formulation. They employ 
a nonfully compatible interpolation function which has been successfully used for 
plate bending. Oden [5, 61 developed a finite-element pressure-velocities 
formulation for both transient and steady nonuniform flow problems. A similar 
formulation has been presented by Lee [7] but in cylindrical coordinates. 

Hood and Taylor [8] have also used the pressure-velocities formulation to 
study various steady flow problems at Re number up to 100. They have recently 
presented a formulation using higher order interpolation functions for velocities 
than pressure, which they claim to give more accurate pressure fields [9]. 

A solution based on stream and vorticity functions was carried out by Cheng [lo] 
for the case of a constricted channel using a Eulerian-Lagrangian scheme which 
enables an implicit time integration scheme. Computations were only carried out 
to Reynolds number when separation was established. Baker [II] also solved the 
Navier-Stokes equations expressed in terms of vorticity and stream functions but 
referred to a Eulerian system of coordinates using an explicit predictor-corrector 
time integration scheme for steady flow configurations. In a recent paper [12] he 
presented results for transient flow (Re = 200) up to a steady state solution. 

For practical two-dimensional applications it is necessary to have a method which 
is as general as possible and also economic. In this paper this has been attempted 
using a vorticity and stream function formulation, which conserves mass identically, 
eliminates one degree of freedom when compared against the pressure-velocities 
approach and has no cross linking in time between the unknowns, due to a time 
delay approximation. 

The solution strategy is similar to Baker’s [Ill but for the problem of vortex 
street development modifications were necessary to bring computer time and 
storage to an acceptable level. Hence the solution presented differs in the following 
ways. 

(a) Quadratic interpolation functions were replaced by linear ones. 
(b) A lumped mass system was used. 
(c) A simple Euler time integration scheme was used. 

The solution was applied to the problem of vortex street development behind 
a rectangular obstruction in a channel of finite width. Results were compared 
against those presented in [I]. 

GOVERNING EQUATIONS 

The governing equations for two-dimensional transient incompressible viscous 
flow can be written in terms of $ stream function and w vorticity as 

(&J/at) + (a~/ay)(aaJ/ax) - (a$/ax)(aw/ay) = vv%J. (1) 
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The relationship between w and + is given by 

We will now propose to solve Eqs. (1) and (2) plus the corresponding boundary 
conditions. The natural boundary conditions for (1) and (2) are 

awlan = g, ens, and a*/& = g, on S,. (3) 

We can now write Eqs. (l)-(3) in a variational (Galerkin-type) statement [4] 
valid at any time t: 

Integrating the V2 terms by parts gives 

as* aw as* au +v(-axIx+ayF)jdxd.= jswgdW% 

ss I 
asw a* (5) 

--- 
ax ax -f&~+wSwl = -jstig$wdS. 

FINITE-ELEMENT SOLUTION 

We will divide the continuum into a number of three nodes triangular elements 
[ 151 and assume on each of them that the w and # functions can be approximated by 

w = cpTWn 9 i) = ‘PTqP. (6) 

cp is the interpolation function (the same for w and tj in this case) and QP, 9% are 
the nodal values of vorticity and stream functions. 

Substitution of (6) into (5) gives, 

S~JPJ{M;~ + Ad + vKw” - B,,,} = 0, 

SW”J(K+~ - B, + Mw”} = 0, 
(7) 
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where 

M= ss wTdxdy, 
A = j-1 Q j(+)Tb” ($)‘- (s)‘V (+)‘r dxdy, 

K = f/ 1% ($)’ + -$ (+)‘1 dx dy, (8) 

B, = j- Q&, ds, % 
B, = s Q&T, ‘8. S* 

Equations (7) hold for any arbitrary variation SW or S#. Hence we have, for 
one element, 

Mt.bn + Ao” + vKo” = B, , 

K+” = B1 - Mw”. 
(9) 

Before assembling the elements we will “lump” the mass matrix in order to 
diagonahze them. This is done because it enables considerable savings in computer 
time and it has been proved very successful in other dynamic problems. The 
lumping consists in distributing the mass of the elements equally at the three 
corner nodes. Thus (9) becomes 

M*cP + Awn + vKon = B 

K+” = B; 1 M*wn, 
(10) 

where M* are the diagonalized mass matrices. 
We can now assemble all the elements together and obtain, for the whole 

continuum, 
Mh+AAn+vKS=B,, (11) 

K*=B&-MMn. (12) 

We will also assume that the essential boundary conditions have been applied 
in Eq. (11) and integrate them in time. For this integration the simple Euler scheme 
was used which gives a recurrence relationship of the following type for Eq. (11). 

!i2 t+dt = S2, + dtM-l{-An - vKC2 + B,}. (13) 

d t: time increment. 
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The term A which is function of Cp can be found by solving Eq. (12) with the 
Q values at time t, i.e., 

Cp = K-l(B+ - MO,). (14) 

The vorticity along a no-slip boundary may be evaluated as follows. For elements 
situated on the no-slip boundaries the stream function is constant along the wall. 
Hence Eq. (2) may be integrated some distance normal to the wall (note that it 
becomes an ordinary differential equation). Using the three node element (linear 
variation) the integral may be evaluated directly giving 

i-2 wall = -[(3(@ - @wall)/~2> + (Q/2)1 

1: distance normal to the wall. 
Thus we can evaluate the vorticity at the wall in terms of the wall stream function 

and an interior value of both stream function (CD) and vorticity (Q), located at the 
distance 1 normal to the wall. 

The method of solution consists of the following steps. 

(a) Evaluation of stream functions at t + At using Eq. (14): The values of 
vorticities except on the nonslip boundaries being those from the previous 
time step “t” or in particular the initial conditions. On the nonslip 
boundaries the wall vorticities are from the t - At cycle or an initial 
estimate. 

(b) Equation (15) is used to correct the wall vorticity values. 
(c) The stream function values are substituted in Eq. (13) to find the vorticities 

at t + dt. 

The above procedure has to be repeated for as many d t as required. Each step 
implies a new evaluation of Eq. (13) which shows the convenience of employing 
a lumped mass system, for which M is a diagonal matrix and its inverse is 
immediate. 

APPLICATIONS 

The above formulation has been applied to study flow in a channel of finite 
width a rectangular obstruction. The channel is 4.5 m long and 1 m width. The 
obstruction was situated 1.05 m from the channel entrance and was 0.4 m long 
by 0.166 m (Fig. I). The initial viscosity was taken as 0.01666 m2/sec. 

The fluid was instantaneously accelerated by applying a uniform velocity of 
2.0 m/set upstream of the channel. As an approximation, the vorticity initially 
was taken as zero everywhere in the interior of the domain. For uniform flow at 
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FIG. 1. Finite-element mesh. 

the channel entrance the vorticity is zero and the stream function is a linear 
function of the y coordinate. The normal derivatives of the vorticity and stream 
function are both zero at the exit enforcing parallel flow. The values of the stream 
function along the upper and lower wall and along the boundary of the obstruction 
are constant and equal to 2.0, 0.0, and 1.0 m2/sec, respectively (see Fig. 2). 

Figure 3 shows the streamlines and vorticities in the region to the obstruction 
at a time t = 2.85 sec. This was the time required to reach the “statistically steady 

y;-kh 

Boundarv conditions for n 

FIG. 2. Boundary conditions. 

state” as defined by Baker [ll], i.e., when the largest value of &~/at at any node 
decreases to 0.04. The Reynolds number for this example taken with respect to 
the width of the obstruction was equal to 20 and the initial vorticity distributed 
equal to zero. At t = 2.85 set the viscosity was instantaneously decreased by 60 % 
giving a Reynolds number of 50. The time step was reduced in an inversely propor- 
tional ratio to the Reynolds number. Figure 4 shows the stream function and 
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FIG. 3. (a) Streamlines for Re = 20; (b) Vorticity functions for Re = 20; 

FIG. 4. (a) Streamlines for Re = 50; (b) Vorticity functions for Re = 50. 

vorticity at the time t = 11.5 set when the statistically steady state has been 
reached. At this time the viscosity was again reduced by a further 50 ‘A within 
0.33 sec. Figure 5 shows the streamlines and vorticity at t = 17.5 sec. At this stage 
the value of &o/at showed no sign of decreasing to the value of 0.04. The time step 
for this case was also found by reducing the original time step in an inversely 
proportional ratio to the Re number. This criterion was found to produce an 
overreduction for large Re numbers. 

Instabilities, inherent in numerical solution of the momentum equations at 
this Reynolds number and propagated by computer round-off error, eventually 
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FIG. 5. (a) Streamlines for Re = 100; (b) Vorticity functions for Re = 100. 
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FIG. 6. Vortex street development for Re = 100 (Stationary streamlines). Lumped mass case. 
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increased until vortex shedding occurred. Figure 6 (from t = 29.5 to 3 1.3 set) shows 
this phenomenon, each frame being 0.3 set apart. In order to show the vortex 
more clearly the free-flow streamline values were subtracted from the computed 
streamline values. The vortices are rather weak, which may be due to the long 
nature of the obstruction and the coarseness of the mesh. Because of the obstruction 
length very low values of velocities and vorticity were recorded at the downstream 
corners. The lumping of the mass together with the coarses of the mesh produces 
an artificial damping effect destroying the angular momentum of the fluid. 
Nevertheless, the STROUHAL number (defined as the shedding frequency multi- 
plied by the width of the obstruction divided by the free stream velocity) calculated 
from these results is approximately S = 0.12, which agrees favorably with that 
obtained by Fromm and Harlow [I], S = 0.119 for the same Reynolds number 100. 

FIG. 7. Vortex street development for Re = 100 (Stationary streamlines). Consistent mass 
case. 
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The ratio of vortex speed to wall speed (0.79 for a Re = 100) was also found to be 
the same as the ratio reported in [I]. 

In order to find out the difference in results produced by the lumping of the 
masses, the same example was run without lumping the masses (i.e., consistent 
mass case). The results for Re = 100 are shown in Fig. 7. Comparison with the 
previous results (Fig. 6) shows that although the lumping of the masses introduces 
a certain amount of damping, it does not change the overall flow configuration, 
i.e., the STROUHAL number and ratio of vortex speed to wall speed remains 
constant. Numerical tests indicate that this damping effect tends to diminish as t 
approaches infinity. The computer time ratio for the results shown in Figs. 6 and 7 
is approximately 6 to 10. 

Due to the inherent instability of the explicit time integration method, the time 
step used was very small. For Re = 20, 50, and 100, the step was t = 0.01, 
0.005, and 0.0025 set, respectively. These are intermediate Reynolds numbers and 
neither the viscosity nor the velocity will govern the problem. For reference 
purposes we can summarize the parameters in Table I. 

TABLE I” 

Reynolds number 

20 50 100 
(Ar = 0.01 set) (At = 0.005 set) (At = 0.0025 set) 

vAt/(Ax)2 0.0666 0.0132 0.0033 
vAtlAx 0.40 0.20 0.10 
Steady state Reached Reached Not reached 

o Ax (minimum value) is 0.05 m; v = 2 m/set. 

The computer CPU time per cycle was approximately 0.75 set on an ICL 1906A 
machine and the storage required was 50K words (two words were required to 
store a floating point number). 

CONCLUSIONS 

A method for solving the transient, incompressible, viscous and two-dimensional 
Navier-Stokes equations using finite elements has been applied to the problem of 
vortex street development behind a rectangular obstruction. The results are 
sufficiently accurate to describe the overall flow configuration for Reynolds 
numbers up to 100. 
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The simple Euler integration scheme was found to be sufficiently accurate for 
this particular problem. For instance after the initial 200 time integration steps 
the difference between Euler and second-order Runge-Kutta was found to be in 
the order of 0.1% at any node. 

The lumped mass simplification, although given an artificial damping to the 
system, has proved to be highly economic in computer time. 
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